
Installing Version 9 of Icon on UNIX Platforms
Gregg M. Townsend, Ralph E. Griswold, and Clinton L. Jeffery

Department of Computer Science
The University of Arizona
Tucson, Arizona

IPD243c
November 29, 1996
http://www.cs.arizona.edu/icon/docs/ipd243.html

1. Introduction

Version 9 [1] is the current version of Icon, superseding Version 8. Version 9 contains new features and major
changes to the implementation. This report provides the information necessary to install Version 9 of Icon on
computers running UNIX.

The implementation of Icon is designed so that it can be installed, largely automatically, on a variety of UNIX
platforms. This is accomplished by configuration information that tailors the installation to specific platforms.

The distribution contains configuration information for many UNIX platforms. These are listed in the
appendix. Some of these originated under earlier versions of Icon. The platforms marked with an asterisk in
the appendix have been tested under Version 9. Installation on a tested platform should be routine, although
minor configuration adjustments may be necessary for local conditions.

If there is configuration information for your platform, you may be able to install Icon without modification,
but if problems show up, you may have to modify configuration files [2]. In some cases, there may be partial
configuration information. If the configuration information for your platform is partial or lacking altogether,
you still may be able to install Version 9 of Icon by providing the information yourself, using other
configurations as guides.

If your platform is not listed in the appendix, it may have been added since this report was written. See Section
2 for information on how to check for a configuration for a specific platform.

2. The Installation Process

There are only a few steps needed to install Icon proper. In addition to the Icon translator and interpreter, there
are three optional components that you can install: a compiler [3], a variant translator system [4], and a
program library [5]. You may want to review the technical reports describing these optional components before
beginning the installation. In any event, the installation of optional components can be done separately after
Icon itself is installed.

There are Makefile entries for most steps. Those steps are marked by asterisks. Steps that are optional are
enclosed in brackets:

1. Decide where to unload Icon.

2. Unload the Icon hierarchy at the selected place.
3* Check the status of the configuration for your system.
4* Configure the source code for your system.
5* Compile Icon.
6* Run simple tests.
[7*] Run extensive tests.
[8*] Run benchmarks.
[9.] Install Icon at the desired place.

Step 1: Deciding Where to Unload Icon

You can build Icon at any place you wish. The executable binaries can be moved to another place later.

In the balance of this report, relative paths and the location of files are given with respect to the location at
which the Icon hierarchy is unloaded. For example, a reference to make is with respect to the Makefile at the
top level of this hierarchy.

Step 2: Unloading the Files

The distribution consists of a hierarchy, which is rooted in ".". Icon is distributed in a variety of formats. It
requires about 20 MB of disk space when unloaded. The amount of space it takes to build Icon depends on the
platform, what components are built, and whether intermediate files are deleted between building components.

If the root of the Icon hierarchy is icon, the resulting hierarchy should look like this after the distribution files
are unloaded:

 |-bin------ executable binaries and support files
 |
 |-config---|-unix------ UNIX configuration directories
 |
 |-docs----- documents
 |
 |-ipl------ Icon program library
 |
 | |-common---- common source
 | |-h--------- header files
 | |-iconc----- Icon compiler source
|-icon----|-src------|-icont----- Icon translator source
 | |-preproc--- preprocessor source
 | |-rtt------- run-time translator source
 | |-runtime--- run-time source
 | |-vtran----- variant translator source
 | |-xpm------- XPM support
 |
 | |-bench----- benchmarks
 | |-calling--- calling C functions
 | |-general--- general tests
 |-tests----|-graphics-- graphics tests
 |-samples--- sample programs
 |-vtran----- variant translator tests

There are additional subdirectories that are not shown above.

Step 3: Checking the Status of the Configuration for Your Platform

Check the status of the configuration for your platform before attempting an installation; it may contain
essential information. This can be done by

make Status name=name

where name is one of those given in the table in the appendix at the end of this report. For example,

make Status name=sun4 solaris

lists the status of the configuration for a Sun 4 workstation running Solaris 2.x.

In many cases, the status information was provided by the person who first installed Icon on the platform in
question. The information may be obsolete and possibly inaccurate; use it as a guide only.

There are some configurations for which not all features of Icon are implemented. If the status information
shows this for your platform, proceed with the installation, but you may wish to implement the missing
features later. See Reference 2 for this.

Step 4: Configuring Icon for Your Platform

Configuring Icon creates several files for general use. Before starting the configuration, be sure your umask is
set so that these files will be accessible.

There are two configuration possibilities: with or without graphics facilities.

To configure Icon without graphics facilities, do

make Configure name=name

where name is the name of your platform as described above. For example,

make Configure name=sun4_solaris

configures Version 9 of Icon for a Sun 4 Workstation, but without graphics facilities.

To configure Icon with the X Window System graphics facilities, use X-Configure instead of Configure, as
in

make X-Configure name=sun4_solaris

Note: On some platforms, error exit codes from installation processes may be intercepted by make and result in
warning messages. These messages can be safely ignored.

If you first configure without graphics facilities and later decide to add them, you will need to re-install Icon
starting with this step.

If errors occur because the X include files or libraries are not found where they are expected, modify the
appropriate files in the subdirectory of config/unix (see Reference 2) and restart from the make
X-Configure step.

Step 5: Building the Icon Interpreter

Next, compile the Icon interpreter by

make Icon

There may be warning messages on some platforms, but there should be no fatal errors.

Step 6: Performing Simple Tests

If Icon compiles without apparent difficulty, a few simple tests usually are sufficient to confirm that Icon is
running properly. The following does the job:

make Samples

This test compares local program output with the expected output. There should be no differences. If there are
no differences, you presumably have a running installation of Icon.

Step 7: Extensive Testing

If you want to run more extensive tests, do

make Test

Some differences are to be expected, since tests include date, time, local host information, and
platform-specific formats for floating-point numbers. In addition to Test there are some individual tests of
optional features. See the main Makefile for more information about the tests.

To test Icon's graphic facilities, use gpxtest.icn in test/graphics. It should build and run without error,
producing a window similar to the GIF image gpxtest.gif in the same area.

Step 8: Benchmarking

Programs are provided for benchmarking Version 9 of Icon. To perform the benchmarks, do

make Benchmark

See also the other material in the subdirectory tests/bench. It contains a form that you can use to record your
benchmarks with the Icon Project (see Section 9).

Step 9: Installing Icon

The files needed to run Icon are placed in bin in the Icon hierarchy as the result of building the Icon interpreter:

icont Icon translator
iconx Icon interpreter

Some other files related to installing Icon and the optional components mentioned earlier also are placed in bin.
The executable files needed to run Icon -- icont and iconx -- can be copied or moved to any desired place,
and they need not be in the same directory.

Since icont must know the location of iconx, it is necessary to patch icont if iconx is moved. The program
patchstr, also installed in bin, is provided for this purpose. It is used as follows:

patchstr icont-location iconx-location

For example, if icont is moved to /usr/local/icont and iconx is moved to /usr/local/icon/iconx, the
patching step is

patchstr /usr/local/icont /usr/local/icon/iconx

Patching can be repeated if necessary. The patch value can be checked by using patchstr without a second
argument, as in

patchstr /usr/local/icont

which prints the path to iconx in /usr/local/icont.

3. Installing the Compiler

In addition to the interpreter, whose installation is described above, there is a compiler. The interpreter gets a
program into execution quickly and is recommended for program development, debugging, and most
production situations. The compiler produces code that executes somewhat faster than interpreted code (a
factor of 2 or 3 is typical), but the compiler requires a large amount of resources and is very slow in producing
executable code. The compiler is recommended only for small programs where execution speed is the
paramount concern.

The interpreter and compiler are independent of each other and can be built or rebuilt separately. You can skip
this section if you do not need the compiler.

Installing the compiler is very similar to installing the interpreter. Steps 1 through 4 in Section 2 apply to both
the interpreter and compiler and need be done only once.

For subsequent steps, there are Makefile entries that are the same as for the combined installation, but with
the suffix -iconc to distinguish the compiler. The steps to build the compiler are:

make Icon-iconc
make Samples-iconc
make Test-iconc
make Benchmark-iconc

Note: When testing the Icon compiler in conjunction with some C compilers, it may be necessary to remove the
options -p -w for suppressing warning messages that appear in icon/tests/general/Makefile. The file
iconc needed to run the Icon compiler is placed in bin in the Icon hierarchy as the result of building Icon.
Files needed by iconc also are placed in bin:

dlrgint.o stubs for large integer arithmetic
libXpm.a XPM library if configured for graphics
rt.a compiler library
rt.db compiler database
rt.h include file

The executable file iconc can be moved to any place. Similarly, the files needed by iconc can be moved to
another directory. There is a Makefile entry for doing this:

make CopyLib Target=directory

where directory is the directory in which the files needed by iconc are to be placed.

Since iconc must know the location of the files it uses, it is necessary to patch iconc if the files it needs are
moved:

patchstr iconc-location directory/

where iconc-location is where iconc is located and directory is where the files that iconc needs are
located. For example, if iconc is moved to /usr/local/iconc and the files needed by iconc are placed in
the directory /usr/local/icon/iconc.lib, the patching step is

patchstr /usr/local/iconc /usr/local/icon/iconc.lib/

Note that a full path should be used for the directory that contains the files iconc needs and that this path must
be followed by a terminating slash. The patching of iconc can be repeated if necessary.

The path used by iconc can be checked by using patchstr without a second argument, as in

patchstr /usr/local/iconc

4. Variant Translators

The variant translator system facilitates the construction of preprocessors for variants of the Icon programming
language.

The variant translator system requires a version of yacc(1) with large regions. You may have to tailor your
version of yacc(1) for this. If there is a problem, it will show up during testing.

A script, icon_vt, for creating variant translators, is placed in bin during the configuration step described
earlier. There is no separate step for building the variant translator system.

For testing, do

make Test-vtran

There may be warning messages during compilation, but there should be no fatal errors.

5. Icon Program Library

The Icon program library contains a variety of programs and procedures. This library not only is useful in its
own right, but it provides numerous examples of programming techniques that may be helpful to novice Icon
programmers. While this library is not strictly necessary for using Icon, most sites install it, and it is required
for all but the most trivial graphics programs.

In addition to the library proper, the directory ipl/idol contains an object-oriented version of Icon written in
Icon. Go to that directory for more information.

The Icon program library can be used with both the interpreter and the compiler. However, its use under the
compiler requires command-line options in some programs to enable features that are not enabled by default
when using the compiler. Because of this problem, the installation of the the Icon program library is not
supported for iconc.

To build the Icon program library, do

make Ipl

This puts compiled programs in ipl/icode and translated procedures in ipl/ucode.

To test the library, do

make Test-ipl

No differences should show.

You can copy the executable programs in ipl/icode and the translated procedures in ipl/ucode to other
places to make them more accessible, although they can be used from any location that is readable by the user.

6. Installing Documentation

The directory docs contains manual pages:

icon.1 Icon compiler and interpreter
icon_vt.1 Icon variant translator

You may wish to copy these manual pages to a standard location for such documentation. If you are replacing
an earlier version of Icon, you should delete the obsolete manual pages, icont.1, iconc.1, and icon_pi.1.

The docs directory also contains PostScript files for technical reports related to Version 9 of Icon, including
those listed under References.

7. Cleaning Up

You can remove object files and test results by

make Clean

If you copied components of Icon to other places, you can delete the copies left in the Icon hierarchy.

You also can remove source files, but think twice about this, since source files maybe useful to persons
studying or modifying the implementation. In addition, you can remove files related to the option components
of the Icon system that you do not need. If you are tight on space, you may wish to remove documents as
well.

8. Communicating with the Icon Project

If you run into problems with the installation of Version 9 of Icon, contact the Icon Project:

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, AZ 85721-0077
U.S.A.

(520) 621-6613 (voice)
(520) 621-4246 (fax)

icon-project@cs.arizona.edu

Please also let us know if you have any suggestions for improvements to the installation process or corrections
or refinements to configuration information.

Acknowledgement

Cliff Hathaway assisted in the testing and distribution of Version 9 of Icon for UNIX platforms.

References

1. R. E. Griswold, C. L. Jeffery and G. M. Townsend, Version 9.3 of the Icon Programming Language ,
The Univ. of Arizona Icon Project Document IPD278, 1996.

2. G. M. Townsend, R. E. Griswold and C. L. Jeffery, Configuring the Source Code for Version 9 of Icon ,
The Univ. of Arizona Icon Project Document IPD238, 1995.

3. R. E. Griswold,Version 9 of the Icon Compiler , The Univ. of Arizona Icon Project Document IPD237,
1995.

4. R. E. Griswold, Variant Translators for Version 9 of Icon , The Univ. of Arizona Icon Project Document
IPD245, 1994.

5. R. E. Griswold and G. M. Townsend, The Icon Program Library; Version 9.3 , The Univ. of Arizona
Icon Project Document IPD279, 1996.

Appendix -- UNIX Icon Configurations

Configuration information for the platforms listed below is provided in Version 9 of Icon. Asterisks identify
configurations that have been tested under Version 9, although some have documented problems.

computer UNIX system name

Amdahl UTS amdahl_uts
Apollo Workstation BSD domain_bsd
Astronautics ZS-1 UNIX zs1
AT&T 3B1 (UNIX PC) System III unixpc
AT&T 3B2 System V att3b_2
AT&T 3B5 System V att3b_5
AT&T 3B15 System V att3b_15
AT&T 3B20 System V att3b_20
AT&T 3B4000 System V att3b_4000
AT&T 6386 System V att6386
CDC Cyber NOS/VE cdc_vxve
Celerity 4.2BSD celerity_bsd
Codata 3400 Unisis codata
Convergent MegaFrame CTIX mega
Convex C240 BSD convex
Cray-2 UNICOS cray2
*DEC Alpha OSF/1 Version 3.x dec_osf
DEC MIPS Ultrix decstation
DG AViiON System V aviion
DIAB D-NIX diab_dnix
Elxsi-6400 BSD elxsi_bsd
Encore UMAX multimax_bsd
Gould Powernode UTX gould_pn
HP 9000/330 HP-UX hp9000_s300
HP 9000/500 HP-UX hp9000_s500
*HP RISC HP-UX hp_risc
IBM 370 AIX ibm370_aix
IBM PS/2 AIX ps2_aix
*IBM RS6000 Workstation AIX rs6000_aix
IBM RT Workstation ACIS rtpc_acis
IBM RT Workstation AIX rtpc_aix
Intel 286 XENIX 286 i286_xenix
Intel 386 BSD/OS 2.0 i386_bsdos
Intel 386 FreeBSD i386_freebsd
Intel 386 Linux i386_linux
Intel 386 Solaris i386_solaris
Intel 386 System V i386_sysv
Intel 386 System V/GNU C i386_sysv_gcc
Intel 386 System V, Release 4 i386_svr4
Intel 386 XENIX 386 i386_xenix
Intel 386 XENIX 386/GNU C i386_xenix_gcc
Intel 486 FreeBSD i486_freebsd_gcc
Intergraph Clipper System V clix
Macintosh AU/X mac_aux
Masscomp 5500 System V masscomp
Microport V/AT System V microport
MIPS/r3000 System V mips
Motorola 8000/400 System V mot_8000

Multiflow Trace UNIX trace
NeXT Mach next
Plexus P60 System V plexus
Pyramid 90x 4.2BSD pyramid_bsd
Ridge 32 ROS ridge
Sequent Balance 8000 Dynix balance_dynix2
Sequent Symmetry Dynix symmetry
Siemens MX500 SINIX mx_sinix
*SGI 4D Irix iris4d
Stride 460 UniStride stride
Sun 2 Workstation SunOS sun2
Sun 3 Workstation SunOS sun3
Sun 3 with 68881 SunOS sun3_68881
Sun 386i SunOS sun386i
*Sun 4 Workstation SunOS 4.1 sun4
Sun 4 Workstation SunOS 4.1/GNU C sun4_gcc
Sun 4 Workstation SunOS 4.1/Open Windows sun4_openwin
Sun 4 Workstation SunOS 4.1/Code Center sun4_saberc
*Sun 4 Workstation Solaris 2.x/SunPro C sun4_solaris
Sun 4 Workstation Solaris 2.x/Centerline C sun4_solar_clc
Sun 4 Workstation Solaris 2.x/GNU C sun4_solar_gcc
Unisys 7000/40 4.3BSD tahoe_bsd
VAX-11 4.1BSD vax_41_bsd
VAX-11 4.2BSD and 4.3BSD vax_bsd
VAX-11 System V vax_sysv
VAX-11 Ultrix vax_ultrix
VAX-11 9th Edition vax_v9

Icon home page

